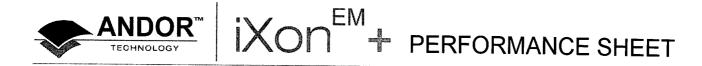
CAMERA OVERVIEW

CAMERA DETAILS

Description Model Number		Serial Number	
Head ▽	DU - 897E - CS0 - #BV - 500	X - 2932	
Controller Card	CCI - 23 Serial Number	or C - 2932	
Other:	Serial Number	r	
Other:	Serial Number	r	

Sensor types are defined in Table 1 using the last letters in box Model Number.

Special Feature	(*)
Special AR coated Window	
MgF ₂ Input	
Other (specify)	


VD Feature			
A/D resolution	Readout Time	Readout Speed	
14 bit	100nS per pixel	10MHz	
14 bit	200nS per pixel	5 MHz	
14 bit	333nS per pixel	3MHz	
14 bit (D only)	1000nS per pixel	1MHz	
16 bit (E only)	1000nS per pixel	1MHz	

CCD DETAILS

Manufacturer / Model No.	Pixels	Serial Number
E2V TECH CCD201	1024x1024, 13μm²	
E2V TECH CCD97	512x512, 16μm²	05345-14-17
E2V TECH CCD87	512x512, 16μm²	
E2V TECH CCD65	576x288, 20x30μm²	taminan manangan nyaéta ny
E2V TECH CCD60	128x128, 24μm²	ayuninginin muqaayaan ahayayaan mahaa ee ee ahaan ahaa ahaa ahaa ahaa aha

abla Table 1; Key code to define the meanings of the last letters in the Model Number

Options				
Letters	Sensor	Window		
FI	Front illuminated sensor	Standard AR coated fused silica window		
BV	Back illuminated sensor with 550nm AR coating	Standard AR coated fused silica window		
UV	Front illuminated sensor with UV phosphor	Uncoated fused silica window		
UVB	Back illuminated sensor with UV phosphor	Uncoated fused silica window		

SUMMARY OF SYSTEM TEST DATA

SENSITIVITY, READOUT NOISE, BASE MEAN LEVEL AND SATURATION LEVEL

A/D Rate EM = electron multiplication Con = conventional	Preamp setting	CCD Sensitivity ◆1 (electrons per A/D count)	Single Pixel Noise ≠2 (electrons)	Base Level ◆3 (Counts)
	1.0x	65.23	98.2	388
10 MHz 14 bit EM amplifier	2.4x	26.75	60.6	375
	4.8x	12.17	48.5	380
	1.0x	59.18	88.2	368
5 MHz 14 bit EM amplifier	2.4x	24.07	56.0	357
	4.8x	10.87	41.4	329
	1.0x	59.49	66.5	367
3 MHz 14 bit EM amplifier	2.4x	23.98%	41.8	356 n
1897 - 18 1 - F	4.8x	10.79	31.6	338 👯 .
	1.0x			
1 MHz 14 bit EM amplifier (D system only)	2.4x		-	
	4.8x · .		· · · · · ·	
	1.0x	23.91	39.8	398
1 MHz 16 bit EM amplifier (E system only)	2.4x	9.57	23.8	386
	4.8x	4.33	19.6	354
	1.0x	11.17	15.4	367
3 MHz 14 bit CON amplifier	2.4x	4.23	11.9	354
	4.8x	1.89	9.8	328
	1.0x			-
1 MHz 14 bit CON amplifier (D system only)	2.4x		-	
	4.8x	- 4.1	-	·
	1.0x	4.24	9.0	400
1 MHz 16 bit CON amplifier (E system only)	2.4x	1.58	6.4	393
	4.8x	0.69	5.7	371
Saturation Signal per pixel (MAX horizontal speed 14 bit EM amplifier)		184461	electrons / p	ixel

ANDOR™ IXON + PERFORMANCE SHEET

LINEARITY AND UNIFORMITY

Linearity better than ≠4	1	% over 14 bits
Response Uniformity better than ◆5	0.52	%

CCD DARK CURRENT

Minimum Dark Current Achievable ◆6	0.00034	electrons/pixel/sec
@ Sensor Temperature of ◆7	-98.07	°C and 16 °C water cooling

DARK CURRENT DEFECTS

Hot Spots ◆8				(X, Y	Y')
((, ,)		
Hot Columns ◆9	Column numbers	indicated.	X	×	7

RESPONSE DEFECTS

White/Black Spots ◆10		(X,Y)
(X , X) ((X , X) ((X , X) ((X , X) ((X , X) ((X , X) (X) (X) ((X , X) (X) ((X , X) (X) (X) ((X , X) (X) (X) (X) ((X , X) (X) (X) (X) ((X , X) (X) (X) (X) (X) (X) ((X , X) (,) (, , ,) (, , , , ,) (, , , , ,	
White/Black Columns ◆11	Column numbers indicated	
Trap ♦12	(X,Y)	(X , X)

TEST CONDITIONS

Readout Noise tested at	-75 °C with 16 °C water cooling
Base Mean Level measured at	-75 °C with 16 °C water cooling
Blemishes tested at	-50 °C with 16 °C water cooling

VERSION CONTROL INFORMATION

Hardware Version #	POLO D	CONNECTOR	DIGITAL	ANALOGUE	POWER
Firmware Version #	ENGINE 3.3	EEPROM 15		<u> </u>	E ,
Shipping Software Version #	MCD 4.5	COF 264	RBF	DRIVER 4.28.0.0	
Testing Software Version #	MCD 4.4.0.0	COF 264	RBF 38	DRIVER 4.28.0.0	

SYSTEM PASSED FOR SHIPPING

Test Technician	Date
BLAIR GEDDIS	1st June 2007
the state of the s	

NOTES

All tests are carried out with standard test card Actual performance may differ slightly with supplied card, but will remain within specification

- ◆1 Sensitivity is measured in photoelectrons per A/D count from a plot of Variance [Noise squared] against Signal.
- ♠2 Readout Noise is measured for single pixel readout with the CCD in darkness at temperature indicated and minimum exposure time. Noise values will change with pre-amplifier gain selection [PAG].
- ♦3 Average electronic DC offset for CCD in darkness at temperature indicated and minimum exposure time under dark conditions and single pixel readout.
- ♣4 Linearity is measured from a plot of counts vs. signal up to the saturation point of the system. Linearity is expressed as a percentage deviation from a straight line fit. This quantity is not measured on individual systems.
- ◆5 RMS (root mean square) deviation from the average response of the CCD in full resolution image operation illuminated with uniform white light (defects not included).
- ◆6 Dark current falls exponentially with temperature. However, for a given temperature the actual dark current can vary by more than an order of magnitude from device to device. The devices are specified in terms of minimum dark current achievable rather than minimum temperature.
- ♠7 Minimum temperature achieved for thermoelectric (TE) cooler set to maximum value with water cooling.
- ♠8 A hot spot can be up to 3 pixels in size. For Grade A devices, hot spots are counted if they exhibit >50 times the maximum specified dark current at the test temperature indicated.
- ♦9 A column is considered defective if >10 pixels are affected, or if the column exhibits
 >2 times the maximum specified dark current at the test temperature indicated.
- ♦10 A white/black spot can be up to 3 pixels in size. White/black spots have signals >25% above/below the average (25% contrast) with uniform illumination across the sensor.
- ♦11 White/black columns have ≥10 white/black spots with uniform illumination across the sensor.
- ◆12 Traps are pixels which absorb charge as it is clocked through the defective area. When the light source is switched off, the signal from the trap appears to drop off more slowly than the signal from the surrounding pixels.