

DIFRACTION

Transmitted-light. Bright-field

An unusual way of looking at things!

Consider that every ray leaving the object carries some information about fine detail in the object

Transmitted-light. Bright-field

An unusual way of looking at things!

Consider that every ray leaving the object carries some information about fine detail in the object

Airy and Rayleigh

Airy (1801-1892)
Astronomer
The image of a point source formed by a lens of finite diameter was a disk with halos around it (left) whose properties depended entirely on the size of the lens.

Rayleigh (1842-1919) explained how the wave nature of light determined how it was scattered (Rayleigh scattering). In microscopy
he gave the first mathematical analysis of resolution, defining a resolution criterion based on the Airy disk and showing how it was determined by the Numerical Aperture of the objective.

The Image of a point...is not a point

Image of a point source: the Airy Pattern

Small aperture
Larger aperture

The Image of a point....

This is caused by

Image of a point source: The Airy Pattern

Larger aperture and
shorter wavelength
\square smaller disc
better resolution

What does it mean?

practical example...

$$
\begin{gathered}
\mathrm{r}=\lambda / 2 \mathrm{n} \sin \alpha \\
\mathrm{r}=\lambda / 2 \mathrm{NA}
\end{gathered}
$$

$\lambda=550 \mathrm{NM}$ (GREEN CENTRE OF THE SPECTRUM)

SIN $\alpha=0.65$ (HALF THE ANGLE 40.50; ACCEPTANCE ANGLE 810)
Typical value for 40X objective

$$
\mathrm{r}=\frac{550}{2 \times 0.65}=423 \mathrm{~nm}
$$

Increasing image contrast

Low contrast

Edge contrast

High contrast

Colour contrast

Contrast may be altered...

- In the Specimen by Staining
- In the Microscope by optical and illumination techniques techniques

Colour Filters
Dark Field
Phase Contrast
Differential Interference Contrast

- In the Photographic Image by Choice of film

Choice of developer
Choice of printing paper

- In the Video or Digital Image by Electronic adjustments

Computer manipulation

DARMFED

Darkfield Microscopy

Fig. 62. Oblique Light with a Condenser.
(From Chamot).
'Digital'

oblique illumination

- ie using your finger!

A 'no-cost' option for most microscopes

PHASE

CONTRAST

The full name of the microscopy technique could be something like

"phase-strip method for observing phase objects in good contrast, but shortened is phase contrast."

Frits Zernike (1888-1966)

Transforms differences in relative phase of object waves.... to amplitude differences in the image

Original Phase Contrast Photomicrographs of Human Cells

Brightfield
Phase Contrast

PHASE OBJECT

Positions where amplitudes are equal

Positions where amplitudes are equal

In these positions the diffracted ray must have a value of zero

Positions where amplitudes are equal

In these positions the diffracted ray must have a value of zero

Positions where amplitude of resultant is less than that of zero order

In these positions the diffracted ray must have a negative value

In these positions the diffracted ray
must have a positive value

Points for plotting the diffracted ray

One wavelength

Half a wavelength

Quarter of a wavelength

Diffracted ray now one half wavelength behind zero order

The diffracted ray is now in a position to interfere destructively with the zero order, but it is of lower amplitude

Diffracted ray now one half wavelength behind zero order and amplitude of zero order reduced

New Resultant beam of low amplitude, providing contrast

Phase Contrast Optical Components

Phase Contrast Objective

Phase Condenser Annulus Plate Alignment

Phase Contrast Light Pathways

View of Objective Back Focal Plane for Dark Contrast Phase Objective

The final result -

Phase Contrast Gives Contrast to Structural Detail in Transparent Specimens

View Objective Back Focal Plane

Objective Phase Ring

Miss-Aligned Annular Illumination
 Phase Ring in Objective

Cheek Cell, No
Condenser Annulus

Polarization of Light Waves

Light waves

Crossed polars

The Michel-Lévy Interference Colour Chart

Transmission of Polarized Light Through an Analyzer

Nylon Fiber in Polarized Light

(a)

(b)

Figure 11

Chrysotile Asbestos Fibers in Polarized Light

(a)

(b)

Figure 7

0

Constructive Interference

D = Propagation Direction
$\mathrm{A}=$ Amplitude

$A_{w}+A_{w 1}=A_{R}$ (Resultant)
Waves in Phase

Path Differnce $=0$
$\mathrm{C}=$ Vibration
Direction

Young's Double Slit Experiment

Wollaston Prism Interference Fringes

The final result -

40x

