

DIFRACTION

An unusual way of looking at things!

Consider that every ray leaving the object carries some information about fine detail in the object

An unusual way of looking at things!

Consider that every ray leaving the object carries some information about fine detail in the object

Airy and Rayleigh

Airy (1801 - 1892)

Astronomer

The image of a point source formed by a lens of finite diameter was a disk with halos around it (left) whose properties depended entirely on the size of the lens.

Rayleigh (1842 - 1919) explained how the wave nature of light determined how it was scattered (Rayleigh scattering). In microscopy he gave the first mathematical analysis of resolution, defining a resolution criterion based on the Airy disk and showing how it was determined by the Numerical Aperture of the objective.

Image of a point source: the Airy Pattern

Small aperture

Larger aperture

.....What does it mean?

A practical example...

$$r = \lambda / 2n \sin \alpha$$
$$r = \lambda / 2NA$$

 $\lambda = 550$ NM (GREEN CENTRE OF THE SPECTRUM)

SIN α = 0.65 (HALF THE ANGLE 40.50; ACCEPTANCE ANGLE 810)

Typical value for 40X objective

$$r = \frac{550}{2 \times 0.65} = 423nm$$

Claude Monet

Increasing image contrast

Contrast may be altered...

- In the <u>Specimen</u> by Staining
- In the Microscope by optical and illumination techniques techniques Colour Filters Dark Field Phase Contrast Differential Interference Contrast
- In the <u>Photographic</u> Image by Choice of film Choice of developer Choice of printing paper
- In the <u>Video or Digital Image</u> by Electronic adjustments Computer manipulation

DARK FIELD

'Digital' oblique illumination

- ie using your finger!

A 'no-cost' option for most microscopes

PHASE

CONTRAST

The full name of the microscopy technique could be something like

"phase-strip method for observing phase objects in good contrast, but shortened is phase contrast."

Frits Zernike (1888-1966) Transforms differences in relative phase of object waves.... to amplitude differences in the image

Original Phase Contrast Photomicrographs of Human Cells

Brightfield

Phase Contrast

Positions where amplitudes are equal

Positions where amplitudes are equal

In these positions the diffracted ray must have a value of zero

Positions where amplitudes are equal

In these positions the diffracted ray must have a value of zero

Positions where amplitude of resultant is *less* than that of zero order

In these positions the diffracted ray must have a negative value

Positions where amplitude of resultant is greater than that of zero order

In these positions the diffracted ray must have a positive value

Deter Frees

Points for plotting the diffracted ray

O Datas Even

Diffracted beam now approximately half a wavelength behind zero order

Diffracted ray now one half wavelength behind zero order

The diffracted ray is now in a position to interfere destructively with the zero order, but it is of lower amplitude

Diffracted ray now one half wavelength behind zero order and amplitude of zero order reduced

PHASE CONTRAST

Phase Condenser Annulus Plate Alignment

Phase Contrast Light Pathways

View of Objective Back Focal Plane for Dark Contrast Phase Objective

The final result -

Phase Contrast Gives Contrast to Structural Detail in Transparent Specimens

Brightfield

Phase Contrast

Cheek Cell, No Condenser Annulus

Cheek Cell, Miss-Aligned Condenser Annulus

Cheek cell, Properly Aligned Condenser Annulus

Polarization of Light Waves

Light waves

Crossed polars

Overlapping pieces of Sellotape

Modified from Graham Dunn & Peter Evennett

Crossed polars Rotated 45° Crossed polars + 1 lambda plate

Modified from Graham Duni

Modified from Graham Dunn & Peter Evennett

The Michel-Lévy Interference Colour Chart

Modified from Graham Dunn & Peter Evennett

POLARIZATION

Chrysotile Asbestos Fibers in Polarized Light

Oolite Thin Section in Polarized Light

Young's Double Slit Experiment

Wollaston Prism Interference Fringes

Wollaston Prism (Crossed Polarizers)

The final result -

