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Fluorescence lifetime

Question: how quickly do excited molecules relax back to the ground state?

Since emission is a spontaneous process, its rate is proportional
to the concentration of molecules in the excited state [N*]:

Exponential decay:
dIN*] _

- (k, +k)[N*] => N(1)=N,exp(-1/7,,)

Fluorescence Counts (A.U.)
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The experimentally determined excited state The larger the quantum yield,

lifetime is always smaller then the theoretical one: the longer T,



Fluorescence lifetime




Lifetime measurements

Pulse or
Time-Domain
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Phase-modulation or
Frequency-Domain
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2 Approaches to Measure FLIM in Time-Domain

Time Correlated Single Photon Counting Timegated Intensified CCD Camera
(TCSPC)
‘Upgrade for all camera based microscope
-Upgrade for scanning micsocopes (wide-field, TIRF, spinning-disc, 2-photon)
‘High temporal and spatial resolution -Lower spatial resolution due to intensifier
*Slow (30-60 s per FLIM image) ‘Fast (0.5 - 2 s per FLIM image)

=> useful for fixed samples => suitable for live cell imaging



Measurement of fluorescence lifetimes: TCSPC

laser pulse laser pulse

- .
fluorescence photon fluorescence photon
{{
Py
TCSPC time
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start-stop-time 1 start-stop-time 2 (PS)
FluaTime 100, Fluorescein in buffer, 1°E-8 molar
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absorption and fluorescence of a photon.

* Plot in logarithmic scale to yield a histogram,
which is in the simplest case fitted by a
straight line.

* Caution! Limited to 1 photon per pulsel Doesn't
work at high emission signals.

* Usually 1 emitted photon per 50 - 100
excitation pulses.




Fluorescence lifetime imaging microscopy (FLIM)
W|th a time- gated CCD camera
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average intensity

Measurement of fluorescence lifetimes:

Time-gated CCD camera
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Dynamics and interaction by live-cell FLIM
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* Hela cells imaged every 5 min for
10 h @ 37°C

22 ns  FLIM stack acquired in approx.1s



Fluorescence Lifetime of XFPs

FLIM Curve Fit
tau / ns sd tau /ns sd
CFP 2.22 0.03 2.20 0.02
Cerulean 1.93 0.02 1.88 0.05
GFP 2.05 0.13 2.02 0.12
YFP 2.38 0.15 2.37 0.16
Venus 2.47 0.13 2.45 0.13
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CFP and Cerulean show a multi-exponential decay

CFP fluorescence decay YFP fluorescence decay

Hela cells Hela cells
1600 1800

single-exp decay
double-exp decay

single-exp decay

1400 -\ / 1600

. double-exp deca
\Qk& p y

1 \
hY
12004 1400 !

S e T 1200—- :l
> 1000 | © 1
% {i 3 1000
S 800! 8 1. \
3 1 1% S
g 600_:' § 600—-1;
§ i 2 400_'I
200-‘ 200__
0 - T T T T T 1 0 - T
0 2 4 6 8 10 0
time after pulse / ns time after pulse / ns
All ._. FLIM Curve Fit - lexp Curve Fit - 2exp
g | P ' taul / tau2 /
g tau / ns sd tau /ns sd ns ns x1
g CFP 2.22 0.03 2.20 0.02 0.53 2.63 0.73
E Cerulean 193 0.02 1.88 0.05 0.56 2.44 0.78
3 GFP 205 013 | 202 o012
. YFP 2.38 0.15 2.37 0.16
A AN R venus 247 013 | 245 013
Wavelength {(nm) ’ ’ ’ ’




Fluorescence lifetime imaging microscopy (FLIM)

Observing protein-RNA interaction via FRET-FLIM inside cells

* Protein is tagged with a yellow version of GFP
* RNA is stained with a red intercalator dye

intensity lifetime TERET < Tho FRET
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Examples of lifetime measurements

Trp (W,)
(tp=5ns)

Time-resolved data can provide
information not available from steady-
state fluorescence measurements.

» Distinguish static and dynamic

quenching
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’ » Separate dyes with similar spectral

properties by their lifetime
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» Distinguish population of dyes rather
than a average value (e.g in FRET)
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A protein contains two tryptophan residues, each with a distinct
lifetime. Because of spectral overlap of the absorption and
emission, it is not possible to resolve the emission from the two
residues from steady-state data. However, time-resolved data can
distinguish between both of them indicating a quenching of one of
them (shorter lifetime).



Surface Plasmon Resonance:
Reduction of the fluorescence intensity and lifetime

close to metallic surfaces
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Measuring the height of microtubules by SPR-FLIM

ESUNSESES N N

Lifetime of Alexa488-labeled mictrotubules
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t=2.0ns

(collaboration with M. Berndt & S. Diez)



Timegated imaging decreases
autoflurescence and improves S/N

: "normal” fluorescence image
Autofluorescence has typically a shorter

lifetime (<0.5-1 ns) than fluorescence

dyes or fluorescent proteins (> 2 ns).
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YFP image of a fly wing
expressing a Ca®-FRET sensor



Unmixing of GFP, YFP, and Venus expressing cells

by fluorescence lifetime imaging microscopy
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FLIM microscope can be used for ...

. lifetime measurements

- observe environment (e.g. pH, membrane lipids composition)
ion imaging (e.g. Ca®*, Zn%, Na*, K*)

- separation of spectral similar fluorophores (e.g. GFP & YFP)

. FRET

* protein-protein interactions

- protein activity due to conformational changes
DNA-protein interactions

- RNA-protein association

- Several interaction in parallel (???)

. Time-resolved fluorescence microscopy

- separation of spectral similar fluorophores

» reduction of autofluorescence (tau < 0.5ns)

.. fime-resolved anisotropy measurements
2?77
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